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Abstract 

This paper presents a new approach to 
sensor management of distributed sensor 
networks (DSNs). Given the current pro- 
liferation of remote sensors and their in- 
herent resource constraints, DSN managers 
face a growing problem of managing the 
tradeoff between DSN performance and re- 
source consumption. Our model, the Sensor 
Network Optimal OPerations Simulator, or 
SNOOPS, addresses this tradeoff by identi- 
fying a DSN control strategy that reaches 
an acceptably certain representation of the 
search region while minimizing operating 
costs. 

The core of the SNOOPS model is an 
approximate dynamic programming (ADP) 
process that uses simulation-based policy it- 
eration to identify an efficient DSN con- 
trol strategy. Results indicate that the 
SNOOPS-recommended DSN control strat- 
egy improves the efficiency of DSN opera- 
tions by up to 47 percent over the Base Pol- 
icy of activating all sensors. 

In addition to determining efficient DSN 
control strategies, our model also provides 

a research base to (1) investigate the fu- 
sion of observations from disparate sensors, 
(2) demonstrate the use of non-imaging sen- 
sors to provide adequate situational aware- 
ness where precision emplacement of more- 
capable sensors is not possible, and (3) de- 
velop operational concepts to integrate DSN 
operations with user needs. 

j 

Introduction 

Traditional sensor- networks have been in 
use for years for military and civiUan surveil- 
lance apphcations, as well as for electronic, 
economic, medical, and hazard detection 
systems. These traditional sensor networks 
used relatively simple sensors that were con- 
nected to permanent infrastructure, with 
virtually unUmited power and commvmica- 
tions resources. Without strict resource con- 
straints, the DSN sensor management prob- 
lem was trivial - keep all the sensors ac- 
tive all the time, continuously sampling the 
environment and reporting observations, re- 
ferred to in this paper as the Base Policy. 
Use of the Base PoHcy led to a greater em- 
phasis on sensor fusion than on sensor man- 
agement. 



Recently, however, the types of sensors 
used in these sensor networks have begun 
to evolve, prhnarily due to advances in in- 
tegrated circuit, computing, ajid commu- 
nications technologies (Pottie and Kaiser 
2000). These technological advances have 
resulted in the ability to build advanced 
micro-electromechanical systems (MEMS), 
which have in turn enabled the development 
of more capable, remote sensors with a wire- 
less communication capabiUty. These re- 
mote sensors, commonly referred to as unat- 
tended ground sensors (UGS), consist of a 
variety of sensor technologies that are pack- 
aged for deployment and perform the mis- 
sion of remote target detection, location, 
and/or recognition (Srour 1999), 

Networks of intelligent, disparate sensors 
(like UGS) that are distributed spatially and 
geographically are generally referred to as 
Distributed Sensor Networks, or DSNs. The 
incorporation of UGS has vastly expanded 
the capabiUties of DSNs versus traditional 
sensor networks by facilitating rapid deploy- 
ment and reconfiguration in largely uncon- 
strained arrangements (Clare et al. 1999). 

However, these same UGS have also intro- 
duced new battery power and communica- 
tions bandwidth constraints. While signif- 
icant accomplishments have been achieved 
in developing sensor-level approaches to ad- 
dress these constraints, there still exists a 
need for system-level management of indi- 
vidual DSN assets. 

In the remainder of this paper, we formally 
define the DSN sensor management prob- 
lem, identify the Test Bed Scenario used in 
our research, briefly review related DSN sen- 
sor management research, describe our gen- 
eral approach and methodology for execut- 
ing this approach, identify our modeUng ap- 
proach, define the mathematical formulation 

for our solution technique, present some in- 
teresting results, and offer a plan for contin- 
ued research. 

Problem Definition 

In its simplest form, DSN sensor manage- 
ment is fimdamentally a dynamic resource- 
allocation problem (Malhotra 1995), where 
we must balance DSN performance (mea- 
sured in terms of target detection and local- 
ization) against resource consumption (mea- 
sured in terms of power usage). Solving this 
problem necessitates developing a sequential 
decision process for providing control over a 
sensor network where the penalties and re- 
wards for actions are only revealed over time. 

The sequential aspect of this process lends 
itself to interpretation as a closed-loop feed- 
back control system, as described by Bert- 
sekas (2000) in Figme 1. 

u 
S 

. 
u = )!(y) LJ ■ y 

y = S(u,w) 

Figure 1: 
System 

Closed-Loop Feedback Control 

In this figure, u depicts the Input, w de- 
picts the random Disturbance, S is the Sys- 
tem Function, y depicts the Output, and TT is 
the Feedback Controller. The term u = iT{y) 
indicates that each Input is a function of the 
previous Output. 



We can easily interpret the DSN sensor 
management problem in terms of a closed- 
loop feedback control system. Initial control 
instructions direct specific sensors to take 
measurements of the environment. These 
measurements, or observations, are trans- 
lated into sensor reports, which are fused 
using a Bayesian approach to provide an up- 
dated representation of the search region. 
This updated representation is then used by 
the Feedback Controller to determine the 
next iteration of sensor control instructions. 

Using this interpretation, our objective 
in addressing the DSN sensor management 
problem is to develop a strategy for the Feed- 
back Controller that allows us to detect and 
locate any objects of interest in the search 
region while conserving scarce resources. In 
other words, we need to develop a model 
that individually tasks DSN sensing assets 
in such a manner as to reach an acceptably 
certain representation of the search region 
while minimizing DSN operating costs, mea- 
sured in terms of power usage. 

Test Bed Scenario 

To provide a specific context for the DSN 
sensor management problem, we created a 
Test Bed Scenario, described below. 

Search Region. The search region for 
the Test Bed Scenario consisted of the three- 
kilometer by three-kilometer terrain box de- 
picted in Figure 2. 

Objective. The objective for the Test 
Bed Scenario consisted of using the DSN to 
detect and locate any objects of interest lo- 
cated within the search region while mini- 
mizing DSN operating costs in order to ex- 
tend the fife of the DSN. 

Sensor Network. The DSN for the Test 

Figure 2: Terrain Box 

Bed Scenario was fairly dense, consisting 
of 35 individual sensing nodes to cover the 
search region. We used only one sensor type 
to simpUfy the sensor fusion problem, select- 
ing acoustic sensors since they axe the most 
common non-imaging sensors in use today 
(Hopkins et al. 2000). The acoustic sensors 
modelled in our scenario consisted of a cir- 
cular array of. microphones that are capable 
of providing a fine of bearing estimate to a 
detected object of interest. 

We modelled the sensors with a "self- 
locating" capabiUty, a realistic expectation 
as there are currently several research ef- 
forts ongoing to enable self-localization of a 
network of sensors (e.g., see (Moses et al. 
2002)). To simplify the problem, we chose to 
estabUsh a fixed cluster topology, with the 
35 sensors organized into four logical clus- 
ters, with from 6 to 12 sensors in each clus- 
ter, as shown in Figure 3. 

In this configuration, each sensor is subordi- 
nate to a cluster head, which is in turn sub- 
ordinate to the sensor network controller. 

We modelled the sensors with onboard 
power management tools that would per- 
mit two operating modes. In the "Sleep" 
mode, a sensor operates at the lowest pos- 
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Figure 3: 
Topology 

Sensor  Location and  Cluster 

sible power consumption level and is just 
awaiting instructions to begin sensing the 
environment. Once awakened, the sensor op- 
erates in an "Active" mode. In this mode, 
the sensor actively observes the environ- 
ment, expending higher amoimts of energy. 
If the sensor detects an object of interest, 
whether a true detection or false alarm, it 
will then expend an additional amount of 
energy to transmit a sensor report. 

Related Work 

In recent years, there has been an increased 
level of effort focused on developing method- 
ologies that individually task DSN sensing 
assets. Three of the more promising DSN 
sensor management approaches being de- 
veloped include Bayes Risk minimization, 
information-theory, and dynamic program- 
ming (DP). 

Bayes Risk Minimization. In this ap- 
proach, the objective is to apply available 
sensing assets so as to minimize the condi- 
tional expectation of the Bayes average risk 
with respect to a pre-defined loss functional. 
In effect, sensors are selected to reduce the 
risk of making an incorrect detection or lo- 

calization decision. 

In Sinno et al. and Cochran et al. (1999), 
the search region is divided into a number of 
disjoint cells and a hypothesis is established 
for each cell that a target is present in that 
particular cell. Bayes Rule is appUed to the 
prior probabilities of the h3^otheses and the 
sensors' probabilities of detection and false 
alarm to calculate the posterior probabili- 
ties of each hypothesis, given a particular 
test and its outcome. Using these posterior 
probabilities, the conditional expectation of 
the Bayes average risk is determined before 
any test is actually run and the action result- 
ing in the minimum expected Bayes Risk is 
selected. 

While this sort of a closed-loop feedback 
control pohcy is useful for its stated purpose, 
it fails to address two of our critical DSN 
sensor management requirements: reducing 
imcertainty in the search region representa- 
tion and minimizing resource consumption. 

Information Theory. In this approach, 
the objective is to apply available sensing 
assets so as to reduce the uncertainty in 
the state and hence produce a quantifiable 
amount of information. Mclnt3n:e (1996) 
postulates that sensor observations produce 
potential information gains that may reduce 
(i) uncertainty of location of undetected tar- 
gets, (ii) uncertainty associated with the es- 
timate of a target's state vector, or (iii) un- 
certainty associated with target identity. 

Mclntyre (1998) and Mclntyre and Hintz 
(1997) present models that schedule sensor 
usage based on Shannon's definition of en- 
tropy as a measure of potential information 
gain. The models use the measure of poten- 
tial information gain to determine whether 
to use sensor resources to track targets al- 
ready in track or to search for new targets, 



and then to decide which sensor to use. 

Kastella (1997) and Schmaedeke (1993) 
present models that schedule sensor usage 
based on the Kullback-Leibler discrimina- 
tion information function as a measure of po- 
tential discrimination gain. The models es- 
timate the expected discrimination gain for 
the observation of each sector of the search 
region and then activate sensors in such a 
way as to maximize the expected discrimi- 
nation gain. 

This closed-loop feedback control poHcy 
shows promise as a DSN sensor manage- 
ment policy since it is focused on reducing 
the uncertainty in the search region repre- 
sentation. However, it chooses to perform 
the best action at each particular sensing 
iteration, without regard for the evolution 
of the scenario. This may not be desirable 
since one may prefer to perform actions that 
axe not optimal in the information-theoretic 
sense but are superior in terms of mission 
success (Malhotra 1995). 

Dynamic Programming. In this ap- 
proach, the objective is to apply the sens- 
ing assets so as to optimize DSN perfor- 
mance within specified resource constraints. 
Castanon (1995) apphes DP to the sensor 
management problem, characterizing it as a 
dynamic sequential hypothesis testing prob- 
lem, with hypotheses associated with spe- 
cific subregions of the search region. His 
model selects sensors to maximize the com- 
posite probabiUty of identifying the correct 
hypothesis at the end of a fixed horizon. 

In subsequent work, Castaiion (1997) uses 
DP to specifically address the problem of 
classifying a known number of unknown ob- 
jects. He again formulates the problem 
as a sequential hypothesis testing problem, 
where the hj^otheses axe associated with 

specific classifications of the objects. His 
model finds a decision rule that minimizes 
the expected total cost over all admissible 
decision rules, subject to sensor use con- 
straints. 

A DP-based closed-loop feedback control 
poUcy appears to be ideally suited for our 
definition of DSN sensor management. In 
fact, Bertsekas (2000) claims that "DP is 
the only general approach for sequential 
decision-making" because of its guaranteed 
convergence to the optimal solution (given 
the correct cost-to-go's) and its immunity 
to noise. Additionally, Schmaedeke (1993) 
declares that "One of the most promising 
methods to provide the sequential decision 
process necessary to develop control instruc- 
tions is approximate dynamic programming 
(ADP)." 

General Approach 

Our approach to address the DSN sensor 
management problem consists of developing 
an ADP-based closed-loop feedback control 
process that identifies an efficient DSN con- 
trol strategy. The firamework we used to de- 
velop this closed-loop feedback control pro- 
cess is depicted in Figure 4. 

In Step 1 of this framework, we decide 
which sensors to activate for the particular 
sensing iteration, using an ADP construct 
described below. In Step 2, the active sen- 
sors operate, taking readings and passing re- 
ports up the DSN hierarchy, as defined in the 
cluster topology. In Step 3, we fuse the re- 
ports submitted by the active sensors to up- 
date our representation of the search region. 
Finally, in Step 4, we determine whether our 
current representation of the search region is 
adequate enough to terminate the DSN mis- 
sion. If not, we return to Step 1 and repeat 
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Figure 4: Sensor Management Framework 

the cycle until either an object of interest 
is located or we are certain enough that no 
object is present. 

The ADP optimization process balances 
both present and expected future costs while 
working towards an ultimate objective. At 
each stage of the problem, we use Monte 
Carlo simulation to implement a one-step 
lookahead version of a rollout poUcy to de- 
velop approximations for the transition costs 
and cost-to-go functions for a number of 
promising control actions. We then use these 
approximations to select the best candidate 
action, execute the selected action, and then 
proceed to the next stage, continuing this 
process until we achieve the DSN objective. 

Methodology 

Our methodology for implementing and 
validating the approach described above 
consists of executing the following tasks: 

DSN Simulation Model Development 

• DP Formulation 

• Policy Comparison Analysis 

These three tasks are summarized below 
and described in detail in subsequent sec- 
tions of the paper. 

DSN Simulation Model Develop- 
ment. Since there was no actual DSN avail- 
able with which to experiment, we developed 
our own DSN simulation model. Our model, 
the Sensor Network Optimal OPerations 
Simulator, or SNOOPS, serves two primary 
purposes. First, it simulates the perfor- 
mance of any static or dynamic stationary 
sensor control policy. Second, it implements 
the aforementioned ADP process to identify 
a "near-optimal" sensor control poUcy (here- 
after referred to as the SNOOPS PoHcy). 

DP Formulation. We used the DP 
model for d3aiamic search suggested in 
Castanon (1995, 1997) and revisited in 
Patek (2001) as the basis for the mathemat- 
ical formulation of our sensor management 
process. The cited works assume that a sen- 
sor searches only one cell at a time and that 
false alarms will not occur. In our model, we 
extend these results in a number of ways. 
First, we consider searches where multiple 
cells may be searched simultaneously. Sec- 
ond, we consider searches which can produce 
false alarms. Finally, we extend the formu- 
lation from a finite to an infinite horizon. 

Policy Compeirison Analysis. Using 
the SNOOPS Model, we quantified the per- 
formance of the Base Policy and SNOOPS 
Policy. We collected output data that in- 
cluded the total cost to reach termination, 
the number of stages required to reach termi- 
nation, and the amount of computation time 
required to reach termination. We also in- 
cluded the performance of various other sim- 



pie dynamic sensor control policies to pro- 
vide additional performance comparisons. 

Modelling Approach 

The SNOOPS DSN simulation model 
makes use of three fundamental modelling 
components: a Detection Model, a Sensor 
Fusion Model, and a Bayesian Model. 

Detection Model. In the SNOOPS 
model, each active sensor makes a binary de- 
cision, y, between two hypotheses for each 
cell observed: Hi that an object of interest 
is present in the cell and HQ that an object 
of interest is not present in the cell. The 
Hkelihood of declaring whether HQ or Hi is 
true is dictated by the sensor's performance 
capabiHties. 

In standard signal detection theory, a 
corresponds to the probabiUty of a "False 
Alarm" (or false positive) and P corresponds 
to the probability of a "Miss" (or false neg- 
ative). Conversely, the probability of a "De- 
tection" (or true positive) is (1 - /?) and the 
probability of a "Quiet" outcome (or true 
negative) is (1 — a). 

SNOOPS uses the curves depicted in Fig- 
ures 5 and 6 to represent sensor performance 
characteristics. 

Figure 5 represents the probability of detec- 
tion (PD) curve used to determine (1 - /?) 
while Figure 6 represents the probability of 
false alarm (PF) curve used to determine a. 
Both of these curves are a function of sensor- 
target (S-T) distance. 

If the sensor detects an object of interest 
(either a true or false positive), it submits a 
sensor report. SNOOPS handles directional 
and non-directional sensors differently. Di- 
rectional sensors (e.g., acoustic) are able to 

PD Curve 

Figure 5: PD Curve 

PF Curve 

Figure 6: PF Curve 

provide a bearing to the target, reported in 
the range (0, 360), with 360 degrees indi- 
cating due North. The result of a detection 
will be a "Report Cone," a region extend- 
ing out to the sensor's maximum range and 
centered on the reported bearing to the tar- 
get. The width of this cone is determined 
by the sensor capabilities. A Report Cone is 
graphically depicted in Figure 7. 

Non-directional sensors (e.g., seismic), on 
the other hand, are unable to provide a bear- 
ing to the target. The result of a detection 
will be a "Report Disk," a region centered 
on the sensor location and extending to its 
maximum range. A Report Disk is graphi- 
cally depicted in Figure 8. 
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Figure 8: Report Disk 

Sensor Fusion Model. SNOOPS uses a 
distributed fusion approach, with sensor fu- 
sion occurring at multiple locations through- 
out the DSN. Each cluster head fuses the 
input from its subordinate sensors and then 
forwards a fused cluster report to the DSN 
controller. The DSN controller than fuses 
these inputs to develop a global inference. 
This sharing of the computational burden 
throughout the sensor network provides sev- 
eral benefits, including reduced power con- 
sumption and bandwidth. 

While the sensor reports are created in re- 
sponse to a binary local decision, each of the 
fusion centers in the SNOOPS model uses 
a fusion of probabilities scheme to fuse the 

reports. In this scheme, detection proba- 
bihties are used instead of actual observa- 
tion vectors or local decisions. These detec- 
tion probabilities are derived from the pre- 
viously described sensor performance curves. 
Krzysztofowicz and Long (1990) claim that 
the fusion of probabilities scheme offers high 
performance and flexibiUty for distributed 
multi-sensor systems, has modest require- 

. ments for communications channels, and is 
appropriate for situations where observa- 
tions naturally occur in the form of detection 
probabilities. 

Bayesian Model. The centerpiece of 
the fusion of probabiUties fusion scheme de- 
scribed above is an implementation of Bayes 
Theorem, which describes how to develop in- 
ferences based on prior evidence and current 
observations. In the SNOOPS model, we as- 
sume that there exists a current belief about 
the hypothesis that an object of interest is 
present in cell i prior to receiving any sensor 
reports. This prior, or imconditional, be- 
Uef about the probabiHty of cell i contain- 
ing a target is p{Hi), and our prior belief 
that cell i does not contain a target is then 
p(Fo) = l-p(Hi). 

Consider y as a binary observation re- 
turned by a sensor after searching cell i, with 
the values of y being either 0 or 1. The case 
where y = 1 indicates that an object of in- 
terest was detected in cell i, and y = 0 indi- 
cates that no object of interest was detected 
in cell i. The Ukelihood of observing y given 
the presence (or absence) of an object of in- 
terest is then p{y\Hi) (or p{y\HQ)). These 
detection probabilities are derived from the 
appropriate sensor performance curves. 

The sensor fusion problem becomes: Given 
y, determine the posterior probability of cell 
i containing an object of interest, or in other 
words, find p{Hi\y). In general, we can use 

8 



Bayes Theorem to find piHi\y) as follows: 

pmy) = \piy\H^)xp{Hr)]/p{y), 

with piy) =p{y\H,)p{Hi)+p(y\Ho)p{Ho). 
For oiir model, we have formulated specific 
implementations of Bayes Theorem, which 
we will describe in detail in the System Dy- 
namics section of this paper. 

DP Formulation 

We begin the mathematical formulation of 
our sensor management approach by estab- 
Ushing some initial notation. We then de- 
fine our model in terms of normal DP ele- 
ments: states, control actions, disturbances, 
system dynamics, cost structure, objective 
function, and finally, our ADP solution ap- 
proximation. 

Initial Notation. We introduce the fol- 
lowing notation that will be used throughout 
the remainder of this paper (with more de- 
tailed explanations provided in subsequent 
sections): 

Let E denote the environment (search re- 
gion) consisting of C search locations, or 
cells. Each cell Cj, i = 1,2,..., C, represents 
a unique portion of the search region and 
E = Uf=x c,. 

Associated with each cell Q there is a prop- 
erty, P\ defined as "cell i contains an object 
of interest." 

Let x^ denote the probability that property 
P' is true, given all available information. 
Let X = {x^x^,...,^^} be the vector of 
current probabilities associated with each of 
the cells in the search region. 

Let t = 0,1,... denote the stage (sensing 
iteration) of the DSN sensor management 
problem. In general, the DSN sensor man- 
agement process proceeds indefinitely until 
we reach an acceptable level of certainty 
about the search area representation (Mal- 
hotra 1995). For this reason, we cannot as- 
sume that there is a natural (fixed, finite) 
time horizon, a priori. 

Let G G 5ft denote the number of targets in 
the search region. 

Let S denote the set of sensors available 
to observe the search region. Each sensor 
s = 1,2,..., m can observe a portion of the 
search region, the set of cells E^. It is im- 
portajit to note that the sensor footprints 
E^,s = 1,2,..., m are not mutually exclu- 
sive sets (i.e., each cell i may exist in mul- 
tiple sensor footprints) and are constant for 
all stages t. 

Let u denote a test that is appHed to the 
search region, where u £ U, the set of all 
possible tests. Each test u corresponds to a 
different subset of the total available sensors 
S. 

Let 5" denote the set of sensors that are 
included in test u. The subset of cells ob- 
served during test u will depend on the sen- 
sors included in the test and is denoted by 
E", where £;" = Use5«-E'- 

Let y'^'^ denote the local binary decision 
made at sensor s after observing cell i. The 
value of this decision corresponds to a ten- 
tative decision concerning the presence of an 
object of interest in the cell. The binary de- 
cision can take values in {0,1}, with proba- 
biUties described as follows for each sensor s 
included in 5^*: 



{ 
P(y*'* = l|sensor s active) = 

1 - p'''   : if P^ is true (1) 

Pivl'^ = O|sensor s active) = 

1 - P(y^'^ = 1 [sensor s active)       (2) 

When y*'* = 1, we say that cell z is a mem- 
ber of D*, the subset of cells in E^ that are 
considered Detect cells. When y^'^ = 0, we 
say that cell i is a member of N^, the subset 
of cells in E^ that are considered Non-Detect 
cells. The sets £>* and N^ are mutually ex- 
clusive and E^ = D^[J iV^ 

Let z denote the observation made by the 
current set of active sensors, 5", where z G 
Z, the observation space. The observation 
z consists of the vectors D* and N^, for 
each s e 5". For the example shown in 
Figure 7, where a singe sensor s was acti- 
vated, the resultant observation z consisted 
of the vectors iV* = {set of gray cells} and 
D^ = {set of black cells}. 

Problem Types. We consider two types 
of DSN sensor management problems, Type 
I and Type II, each related to a different 
assumption regarding the interdependence 
of the hypotheses. In the following defi- 
nitions, we borrow the terminology of "ex- 
clusive" and "independent" hypotheses from 
Castanon (1995). 

Type I Problem. In this type of problem, 
we have a single C-ary hypothesis testing 
problem, where for each cell i there exists 
a hypothesis H^ that property P' is true. 
For these problems, we assume that these 
hypotheses are "exclusive" (i.e., exactly one 

hypothesis {H°, if\..., H^} is true). This 
would correspond to a scenario with exactly 
one object of interest in the search region. 
For Type I problems, the component values 
of X will necessarily sum to unity for each 
stage of the problem. 

T)jpe II Problem. In this type of problem, 
we have C independent hypothesis testing 
problems, one for each cell i. In each of these 
hypothesis testing problems, there exists the 
hypothesis H^ that property P* is true and 
the null hypothesis that there is nothing of 
interest in cell i. For these problems, we as- 
sume that the hypotheses are "independent" 
(i.e., multiple hypotheses {H°,H^,...,H^} 
may be true). This would correspond to a 
scenario with multiple objects of interest in 
the search region. This is also the most ap- 
propriate category for a scenario where the 
number of objects in the search region G is 
unknown and will be the most frequent prob- 
lem type encountered. For T^pe II prob- 
lems, the component values of x will not simi 
to unity in general. 

States. In our interpretation of the DSN 
sensor management problem our decisions 
regarding sensor control are based on the re- 
sults of noisy sensor observations. While we 
can safely assume that one sensor's obser- 
vations will not have an impact on another 
sensor's observations, it is probably less safe 
to assume that no sensor observations will 
be correlated. For example, several sensors 
will Ukely report on the presence of a tax- 
get (or loud natural phenomenon), given it 
is within each of their footprints. While the 
sensor observations may not be quite inde- 
pendent, we wiU treat them as such for the 
practical purposes of our Test Bed Scenario. 

Once received, these sensor observations 
are stored in the information vector It, where 
h = {zQ,Zu...,Zt,UQ,Ui,...,Ut-i) for t = 
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0,1,... and IQ = ZQ. The information vector 
defines the information available after stage 
t, including the sequence of tests conducted 
and observations received through stage t. 

In our solution to the DSN sensor manage- 
ment problem, we are looking, for a rule that 
tells us the control lit to be appUed for ev- 
ery possible information vector It. As new 
observations are added at each stage t, the 
dimension of the information vector It in- 
creases accordingly. Since it is necessary to 
apply the DP algorithm over the entire space 
of It, solution of this "problem may be very 
complex and computationally impossible for 
large values of t. 

To simplify the problem, we need a func- 
tion that is of smaller dimension than It, yet 
summarizes all the essential content of It as 
far as control is concerned. As shown in 
Bertsekas (2000), a useful sufficient statis- 
tic is the conditional probabiHty distribu- 
tion of the state. In our case, this sufii- 
cient statistic is represented by Xt, the con- 
ditional probability distribution at stage t, 
where xt = {xl,Xt,...,xf}, such that xj is 
the conditional probability that property P^ 
is true, given the information available at 
stage t, or P{P' = l\It). 

The state space X is a convex set which 
represents the set of feasible states for the 
problem. For Type I problems, X can be 
considered to be the n-dimensional unit sim- 
plex since the x] values are constrained to 
sum to unity, while for Type II problems, X 
is much larger since the individual xl values 
are not constrained in the same manner. 

Initial State.     Our initial state 
.2 

is the 
prior distribution, XQ = {XQ,XQ,...,X^}, 

such that XQ is the initial probabiUty that 
the property P* is true. This prior dis- 
tribution consists of subjective probabilities 

which measure the user's degree of behef in 
the presence of an object of interest within 
each cell before applying any tests. For Type 
I problems, these values are normalized so 
that the elements of XQ will sum to unity. 

For the Test Bed Scenario simulation runs, 
SNOOPS used the prior distribution graph- 
ically represented in Figure 9 as the initial 
state. In this figure, the color of each cell 
represents the value of p{Hi) for that cell, 
with light colors corresponding to low prob- 
abilities and dark colors corresponding to 
high probabilities. 

Figure 9: Initial ProbabiUties 

It is easy to correlate the prior probabili- 
ties depicted in Figure 9 with the terrain box 
shown in Figure 2. The highest probabihties 
correspond to road and trail networks while 
the lowest probabilities correspond to water- 
ways and other major obstacles. 

Termination States. A key feature of our 
formulation is that the decision process pro- 
ceeds indefinitely until we reach certainty 
(or near certainty) about each of the hy- 
potheses. To capture termination within 
this framework, we assume that there exists 
a space of special termination regions Cly, 
where 7 is the tolerance that describes our 
required degree of certainty. 
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Just as optimal solutions in linear pro- 
gramming exist at extreme points in the 
feasible region, termination regions exist 
around the extreme points or vertices of the 
state space in our problem. For Type I prob- 
lems, the vector x = (0,..., 0,1,0,..., 0) G 
X (with the 1 in the i-th component) corre- 
sponds to certainty about the property P*. 
For Type I problems, there will be C such 
termination regions. 

For Type II problems, the vector xt = 
(0,...,0,1,0,...,0,1,0,...,0) e X (witha 
I in the i-th and j-th components) corre- 
sponds to certainty about the properties f" 
and PK A similar construct exists for Type 
II problems where more than two objects of 
interest exist within the search region. Fi- 
nally, the vector Xj = (0,..., 0) € -'C corre- 
sponds to certainty that the null hypothesis 
is true (i.e., there are no objects of interest 
in the search region). For Tj^e II problems, 
there will be 2^ such termination regions. 

A termination state xn € fi^. is described 
as a state that satisfies the requirement that 
each x\,i = 1,..., C Ue within the range 
(0,7) or ((1 — 7), 1). The termination states 
are absorbing, and once the system reaches a 
termination state it remains there at no fur- 
ther cost. We point out that the case where 
7 = 0 is reasonable whenever there exist all- 
powerful tests that can locate an object of 
interest with certainty. 

Control Actions. At each stage t of the 
problem, we choose a test Ut €.U that corre- 
sponds to a specific subset of the total avail- 
able sensors. The control space U consists of 
all possible combinations of sensors, which 
translates to a total of 2'^ — 1 unique tests 
from which to choose, given there are S sen- 
sors available. 

Disturbances. The random disturbance 

Wt is an element of a space Wt, i = 0,1,... 
and is characterized by a probabihty mea- 
sure defined on a collection of events in Wt- 
This probability measure may depend ex- 
plicitly on Xt and tif but not on values of 
prior disturbances Wt-i,.. .,wo. These dis- 
turbances describe the stochastic nature of 
the DSN sensor management problem, as- 
pects of the problem that are not control- 
lable. 

System Dynsunics. The system dynam- 
ics are described by a transition function ft, 
a function that describes the evolution of the 
system from state Xt to state Xt+i- The tran- 
sition process works as follows: at stage t the 
system is in state Xt, we make a decision to 
apply the sensors in test Ut, and the system 
incurs a random disturbance Wt, driving it 
to state Xt+i. The system equation that de- 
scribes this transition is as follows: 

^t+i   =   ft{xt,Ut, Wt),    t = 0,1,.... (3) 

The function ft effects the transition from 
state Xt to state Xt+i, where Xt+i = 
(xj+i, x^+i,..., x"+i). This state transition 
is effected through a Bayesian fusion of the 
prior state Xt with the local decisions yl'^ 
(and corresponding probabiUties) resulting 
from appljdng test Ut. The specific evolution 
of the posterior conditional probabilities is 
different for Type I and Type II problems, 
as described below. 

Conditional Probability Evolution - Type I 
Problems. For Type I problems, measure- 
ments resulting from searching cell i will af- 
fect all of the conditional probabilities Xt+i. 
For this reason, the conditional probabiUty 
evolution for Type I problems is much more 
complicated than for Type II problems. 
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For each cell c, G D| (a Detect Cell), the conditional probability evolution is 
given below: 

^t+i — 
jeDi- fceJVf 

E+E+E 
L £» N L J 

(4) 

For each cell Ci e iV/ (a Non-Detect Cell), the conditional probability evolution 
is given below: 

^t+i ~ E+E+E (5) 

For each cell Q ^ £•(* (an Unobserved Cell), the conditional probability evolu- 
tion is given below: 

^t+i — xj X n i^'") X n (1 - ^''') 
Ci€D; Ck^Ni 

E+E+E 
. D .       JV L J 

(6) 

with X3, ^, and ^      defined as follows: 
D       N L 

E= E xj(i-/3^'0x n ('^''')x n (i-«''0 
Cj^Dl- Ck^Nf 

E= E 
AT CiSJVI 

xi{f3''n X n (^''') X n (1 - °^''') 
c,eD? Ck€Ni- 

E= E 
ci^£;» 

4 X n (^'■')"" n (1 - "'■') 
cejDf CfcSJV/ 

(7) 

(8) 

(9) 
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Conditional Probability Evolution - Type 
II Problems. For Type II problems, mear 
surements obtained from searching cell i will 
only affect the local conditional probability 
2J+1 for those cells that were observed, that 
is, where cell i £ Et- 

For each cell Cj 6 D^ (a Detect Cell), the 
conditional probability evolution is given be- 
low: 

^t+i — 
4i^-$''') 

x|(l - /3*'^) + (1 - xi){cx^^^) 
(10) 

For each cell q, € iV/ (a Non-Detect Cell), 
the conditional probability evolution is given 
below: 

^t+i — 
xiip''') 

xiiP''^) + (1 - x\){l - a''^) (11) 

For each cell ck^ E^ (an Unobserved Cell), 
the conditional probabiUty evolution is given 
below: 

^t+i — ^t (12) 

major power expenditures related to tran- 
sition costs: sensing cost and transmission 
cost. The sensing cost is a function of the 
number of sensors that are in test Ut while 
the transmission cost is only incurred if a 
sensor that is in test v^ submits a sensor re- 
port to its assigned cluster head. 

Terminal Cost. For our formulation of the 
problem, we will not impose terminal costs 
since the iterative decision process continues 
until we reach a termination state within an 
acceptable "Gamma Neighborhood." In ad- 
dition, we have not imposed any costs as a 
function of time to completion (number of 
stages required). 

Objective Function. Our objective is 
to determine the optimal sequence of sensor 
tests that will allow us to reach one of the 
termination states with minimum expected 
total cost. Since there is no clear upper 
bound on the number of stages required, we 
must plan over an infinite time horizon. 

For an infinite horizon problem, the usual 
DP objective is defined as follows: given 
an initial state XQ, find a poUcy TT = 
{/Lio,fJii,...}, where fitiXv-^^U,fXt{xt) € Ut, 
for all Xt € X,t = 0,1,..., that minimizes 
the cost function 

Cost Structure. In general DP formula- 
tions, the cost structure consists of two por- 
tions, transition costs and a terminal cost. 
The cost function is additive in that cost 
incurred at stage t accumulates over time. 
Since the primary DSN resource constraint is 
related to power, we established a cost struc- 
ture for oxir DP formulation that is based on 
power consumption. 

Transition Costs. For each stage t, we exe- 
cute a test Ut and pay a cost gt{xt, Ut, wt) > 0 
for implementing the test. We identified two 

J^(xo) = lim Eyj, 
N-*oo 

'N-1 

^9t{xt,^J't{xt),Wt) 
t=0 

(13) 

subject to the system equation con- 
straint (3), repeated below for ease of ref- 
erence. 

Xt+i = ftixt, Ut, Wt), t = 0,1,.. 
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Since termination appears to be inevitable 
for all reasonable heuristic policies TT used 
in our ADP methodology, we make the as- 
sumption that the limit in the definition 
of Jn{xo) is finite. This assumption of in- 
evitable termination allows us to consider 
the infinite horizon DSN sensor management 
problem as a finite (albeit random-length) 
horizon problem, where the length of the 
horizon is affected by the policy being im- 
plemented. The transformation from an in- 
finite to finite horizon problem allows us to 
rephrase the cost function as follows: 

J,(xo) = E, Wt 

Tn 

'^9t{xt,IM{xt),v}t) 
t=0 

(14) 

where we are totalling operating costs from 
stage t = 0 until stage TQ, the stage at which 
we first reach a termination state. The as- 
sumption of inevitable termination implies 
that Tfi is finite with probabiUty one and. 
Equation 14 is well defined. 

DP Algorithm. The DP algorithm for a 
finite horizon problem with fixed time hori- 
zon T reaching state XT at stage Ta is de- 
fined via the following equations: 

JT{XT) = 9T{XT), (15) 

the infimum is not attained, we will use the 
term "min" for convenience of notation. 

On an infinite time horizon, using a total 
cost criterion, the optimal cost J*(xo) for 
every state XQ is equal to Jo{xo) given by 
the last step of the preceding DP algorithm, 
which proceeds backward in time from stage 
Ta to stage 0. The following Umiting form of 
the DP algorithm should hold for all states 
a;, 

J*{x)   =    min E.^[g{x,u,w) 

+    r{f{x,u,w))].    (17) 

The expression above is a functional equa- 
tion for the cost-to-go function J*, and is 
called Bellman's equation (Bertsekas 2000). 
Bellman's equation is, really a system of 
equations, one for each state, where the opti- 
mal expected cost-to-go firom state Xt is cou- 
pled to the optimal expected cost-to-go firom 
neighboring states Xt+i- In (17), the term 
g{x,u,w) denotes transition costs incurred 
by transitioning firom state Xt to state Xt+i 
and the term J*{f{x,u,w)) denotes the op- 
timal cost-to-go from state Xt+i. 

Thus, to act optimally at state x, we need 
to choose action u that minimizes 

Jt{xt)   =     min   EyjAgt{xt,Ut,Wt) 
ut€Ut[.xt) 

+     Jt+lifti^uUt^Wt))], 
.   t = o,i,...,r-i    (16) 

Note that in (16), "min" denotes the great- 
est lower bound (or infimum) of the set of 
expectations over set Ut e U.   Even when 

E^[g{x,u,w) + r{f{x,u,w))].      (18) 

In doing so, we choose actions that minimize 
the expected cost of a single transition plus 
the optimal expected long-term cost from 
the next state Xt+i- This will allow optimal 
actions to weigh both the short-term and 
long-term costs from state Xt. The optimiza- 
tion of this system of equations is nonlinear, 
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since we minimize with respect to u at each 
stage. 

In very simple problems it is possible to ob- 
tain a closed-form solution to the DP algo- 
rithm presented above, but these cases tend 
to be in the minority. For most realistic 
problems, it is necessary to numerically solve 
the DP equations to obtain an optimal pol- 
icy. For large-scale problems Uke the DSN 
sensor management problem, both the state 
and control spaces are very large. In these 
cases, the "curse of dimensionality" makes it 
difficult to compute J* and hence infeasible 
to attempt a complete solution of the prob- 
lem by DP. One approach to address this 
problem is to use various ADP techniques 
to approximate J* and then use the approx- 
imation to construct a workable policy /i. 

Solution Approximation. Policy iter- 
ation entails starting with an initial pol- 
icy, evaluating the poHcy (policy evaluation 
step), and then deriving an improved policy 
(poUcy improvement step) (Bertsekas and 
Tsitsikhs 1996). We decided to use a single- 
stage lookahead rollout policy to execute the 
poHcy iteration. 

Rollout Policy. For our policy evaluation 
step, we use Q-factors. These Q-factors con- 
sist of a state-control pair {xt, itt) and a sta- 
tionary policy /x, defined as 

Q^i^uUt)    =    ^Pxt,. ia:t+i 

Xt+l 
' >/ ' 
transition cost 

cost-to-go 

(19) 

The Q-factor denotes the expected cost 
corresponding to starting at state Xt, using 

control tit at the first stage, and using the 
stationary poUcy fj, at the second and subse- 
quent stages. 

In order to conduct the policy improve- 
ment step at each stage t, we select ac- 
tion fjt.{xt), which represents the action cor- 
responding to the minimum value Q-factor, 
using the equation: 

//(xi) =  nmi Q^{xt, Ut).        (20) 

However, as was the case in trying to de- 
velop a closed-form, exact solution to the DP 
algorithm, we again run into problems try- 
ing to develop a closed-form, exact solution 
to equation (19). Since we have very large 
state and control spaces, we speed up the 
calculation of the rollout pohcy, but accept 
some potential performance degradation, by 
identifying a subset U{xt) of promising con- 
trol actions to evaluate, rather than the full 
set of possible control actions. 

Q-Factor Approximation. In our imple- 
mentation of the single-stage lookahead roll- 
out poUcy, we approximate the Q-factors by 
using simulation to approximate both the 
transition costs gt{xt, Ut, Wt) and the cost-to- 
go functions J*{ft{xt,Ui,Wt)) in (19). 

For our stationary pohcy /x in (19) we use 
the Base Policy. That is, we execute the 
Base Pohcy fxsp at the second and subse- 
quent stages of our rollout poUcy. Even 
though the Base PoUcy is not optimal, it is 
useful since it is expected to always reach 
termination quicker than any other pohcy. 

We then approximate the Q-factor for each 
candidate control action Tit by conducting K 
simulations of a transition from state Xt un- 
der test v^ to state Xj+i and then all subse- 
quent transitions from state Xt+i under the 
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Base Policy IXBP to termination. 

We then use the vector of transition costs, Ji{xt)=   min   QtiBpi^t,'^) (24) 
ut€t/(xt) 

\gt{'^u'^, ^t+i,i)» Pt(^t' ^' ^t+1.2)) • • •' 

gt{xuUt,Xt+i,K)j (21) 

and the vector of cost-to-go's, 

J^sp{^t+i,K)}       (22) 

to obtain an approximation of the Q-factor, 
as follows: 

Qaspi^uUt)    = 
1   ^ 

transition cost 

+    JnBp{^t+i,i) 
V 

cost-to-go 

(23) 

The expected cost accumulated during 
each such trajectory is one estimate of the Q- 
factor. By simulating a large enough num- 
ber of such trajectories, K, we can obtain 
an accurate approximation of the Q-factor, 
Q^Bpi^uUt), by averaging the results of all 
the trajectories. 

Finally, comparing these Q-factor approx- 
imations, we implement the candidate con- 
trol action ]l{xt) corresponding to the mini- 
mum value Q-factor, or in other words. 

Results and Analysis 

In this section we describe the Policy Com- 
parison Analysis we conducted to evaluate 
various DSN sensor management policies 
and the Target Comparison Analysis we con- 
ducted to examine the impact of target loca- 
tion on system performance. During the Pol- 
icy Comparison Analysis, we compared var- 
ious dynamic control policies with the Base 
Policy and the SNOOPS PoHcy, while hold- 
ing system parameters constant. During the 
Target Comparison Analysis, we compared 
various target configurations to determine 
how changes in target location affected the 
ability of the model to reach termination and 
the related operating costs. 

During the simulation process, it was pos- 
sible to collect a number of numerical mea- 
sures of performance (MOPs) with which to 
evaluate the performance of the. individual 
DSN sensor management policies. The com- 
parison involved several key metrics, includ- 
ing: Total Cost, Number of Stages required 
to reach termination. Computation Time, 
and Success Rate. 

Total Cost represents the cumulative DSN 
operating costs required to reach termina- 
tion. The values presented represent the to- 
tal units of cost to reach termination, both 
sensing costs and transmission costs. The 
Number of Stages required to reach termina- 
tion is self-explanatory. Computation Time 
represents the amount of time required to 
complete the simulation run and should only 
be used to compare the magnitude of per- 
formance rather than specific performance 
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values. The values presented represent the 
number of seconds of computation time re- 
quired to execute the simulation run. Suc- 
cess Rate represents the percentage of the 
repUcations that resulted in identifying the 
correct target location upon reaching termi- 
nation. 

Policy Compaxison Analysis. We con- 
ducted a Policy Comparison Analysis to 
compare the performance of several heuris- 
tic dynamic control policies with the Base 
PoUcy and the SNOOPS Policy 

Design of Experiments. For this analysis, 
we used a repeated measures design. We 
conducted two iterations for the analysis, 
one for Type I problems and the other for 
Type II problems, so that we could compare 
model performance between the two process- 
ing techniques. 

The subjects consisted of 500 random tar- 
get locations for the Type I problem itera- 
tion and 1000 random target locations for 
the Type II problem iteration. These target 
locations were randomly selected based on 
the prior probability distribution. 

The treatments consisted of seven differ- 
ent DSN sensor management poUcies, each 
conducted using the same set of sensor per- 
formance characteristics and model parame- 
ters (termination tolerance 7 = 0.1 and false 
alarm rate (FAR) = 0.2) but each with a 
different random number seed. The seven 
treatments are described below: 

• SNOOPS Pohcy: Use the simulation - 
based pohcy iteration ADP technique. 

• Base Policy: Activate all sensors in the 
DSN. 

• Action 1: Search the 10 cells with the 
highest xi values, using the single best 
sensor for each cell. 

• Action 2: Search the 20 cells with the 
highest xl values, using the single best 
sensor for each cell. 

• Action 3: Search the 30 cells with the 
highest xi values, using the single best 
sensor for each cell. 

• Action 4: Search the 20 cells with the 
lowest xi values, using the single best 
sensor for each cell. 

• Action 5: Search the 10 cells with the 
highest xi values, using the two best 
sensors for each cell. 

We expected that the Base Pohcy and 
SNOOPS Pohcy would provide an upper 
and lower bound on expected total operat- 
ing costs. The Base Pohcy should provide 
an upper bound since it is expected to incur 
the greatest cost during each sensing itera- 
tion. The SNOOPS Pohcy should provide a 
lower bound since the simulation-based pol- 
icy iteration technique is designed to select 
the control action from the set U{xt) that is 
"best" for each sensing iteration. 

T)jpe I Problem Results. The Total Cost re- 
sults for the Type 1 problem simulation runs 
are depicted graphically in Figure 10. The 
figure represents the 95 percent confidence 
intervals for the mean total cost, calculated 
over 500 replications, each using a different 
random number seed. 

Conducting ANOVA and using the Scheffe 
procedure at the 0.05 percent significance 
level, we determined that there was no sig- 
nificant difference between Action 5 and the 
SNOOPS Pohcy. However, these two poh- 
cies were significantly better than the group 
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Policy Coniparfson- Type I Problem 

Acioni     Action?    AeiociS    AcKn4    /(cionS 

Figure 10: Type I Problem Results 

consisting of Action 3, Action 1, and Ac- 
tion 2, which were not significantly different 
from each other. This second group was sig- 
nificantly better than the group consisting 
of the Base Policy and Action 4, which were 
not significantly different from each other. 

Type II Problem Results. The Total Cost 
results for the Type II problem simulation 
runs are depicted graphiqally in Figure 11. 
The figure represents the 95 percent confi- 
dence intervals for the mean total cost, cal- 
culated over 1000 repHcations, each using a 
different random number seed. 
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level, we determined that there was no sig- 
nificant difference between Action 5, Action 
1, and the SNOOPS Policy. However, these 
three policies were significantly better than 
Action 2, which was significantly better than 
Action 3. This poUcy was in turn signifi- 
cantly better than the group consisting of 
the Base Policy and Action 4, which were 
not significantly different from each other. 

Target Comparison Analysis. We con- 
ducted a Target Comparison Analysis to 
compare the performance of several heuris- 
tic dynamic control policies with the Base 
PoHcy and the SNOOPS Policy for specific 
target locations in order to determine the 
impact of target location on system perfor- 
mance. 

Design of Experiments. For this analysis, 
we used a repeated measures design, just as 
for the previous analyses. We conducted two 
iterations for the analysis, one for Type I 
problems and the other for Type II prob- 
lems, so that we could compare model per- 
formance between the two processing tech- 
niques. 

The subjects consisted of 50 iterations for 
three target locations. To determine appro- 
priate target locations, we reviewed the in- 
dividual results from the Policy Comparison 
Analysis. We found that target locations fell 
into one of three categories: "easy", "aver- 
age", and "difficult". For example, the four 
most difficult targets to detect and local- 
ize (i.e., resulting in the highest total costs) 
were Targets 6, 14, 35, and 47, as depicted 
in Figure 12. 

Figure 11: Type II Problem Results 

Conducting ANOVA and using the Scheffe 
procedure at the 0.05 percent significance 

We decided to choose one of these "diffi- 
cult" targets, (Target 47), an "average" tar- 
get (Target 1), and an "easy" target (Target 
33) as the subjects for the Target Compari- 
son Analysis. 
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procedure at the 0.05 percent significance 
level, we determined that for Target 1 there 
was no significant diJBterence between the 
SNOOPS Policy, Action 1, Action 5, Action 
2, and Action 3. However, this group was 
significantly better than the group consist- 
ing of the Base Pohcy and Action 4, which 
were not significantly different from each 
other. 

Figure 12: Target Location DiflEculty 

We used the same seven treatments as for 
the PoUcy Comparison Analysis, each con- 
ducted using the same set of sensor perfor- 
mance characteristics and model parameters 
(7 = 0.1, and FAR = 0.2) but each with a 
different random number seed. 

Policy Cdmpacison T Target 33 
O^jiptlProUwt 

aaoo 

eaoo. 

40.00 

2ai» 

dob 

tfeiipiS^y V ■ jn»: ''afeife;        i" 

Actonl     «dhxi2    AcHoiS    Ac<i»i4    AelociS 

Type I Problem Results. The Total Cost 
results for the Type I problem simulations 
are depicted graphically in Figures 13, 14, 
and 15. Each figure depicts the 95 percent 
confidence intervals for the mean total cost, 
calculated over 50 replications, each using a 
different random number seed. 
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Figure 13: Type I Problem Results - Total 
Cost (Target 1) 

Conducting ANOVA and using the Scheffe 

Figure 14: Type I Problem Results 
Cost (Target 33) 

Total 

Conducting the same analysis for Target 
33, we found similar findings. There was no 
significant difference between the SNOOPS 
Policy, Action 1, Action 5, Action 2, and Ac- 
tion 3. However, this group was significantly 
better than the group consisting of the Base 
Pohcy and Action 4, which were not signifi- 
cantly different firom each other. 

Conducting the same analysis for Target 
4'7, we found that there was no signifi- 
cant difference between the Base PoHcy, the 
SNOOPS Policy, Action 4, Action 5, Action 
2, and Action 3. This group was significantly 
better than Action 1. 

Type II Problem Results. The Total Cost 
results for the Type I problem simulations 
are depicted graphically in Figures 16, 17, 
and 18. Each figure depicts the 95 percent 
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Figure 15: Type I Problem Results - Total 
Cost (Target 47) 

Figure 17: Type II Problem Results 
Cost (Target 33) 

Total 

confidence intervals for the mean total cost, 
each using a different random number seed. 
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Figure 16: Type II Problem Results 
Cost (Target 1) 

Total 

Conducting ANOVA and using the Scheffe 
procedure at the 0.05 percent significance 
level, we determined that for Target 1, there 
was no significant difference between Action 
1, the SNOOPS Policy, Action 5, Action 2, 
and Action 3. However, this group was sig- 
nificantly better than the Base Policy, which 
was significantly better than Action 4. 

Conducting the same analysis for Target 
33, we found that there was no significant 
difference between Action 1, Action 2, the 

SNOOPS PoHcy, Action 3, and Action 5. 
However, this group was significantly better 
than the group consisting of the Base PoUcy 
and Action 4, which were not significantly 
different from each other. 
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Figure 18: Type II Problem Results 
Cost (Taxget 47) 

Total 

Conducting the same analysis for Target 
47, we found that Action 5 was signifi- 
cantly better than the group consisting of 
the SNOOPS Policy and the Base Policy, 
which were not significantly different firom 
each other. This group was significantly bet- 
ter than Action 1, which was significantly 
better than the group consisting of Action 

21 



4, Action 2, and Action 3, which were not 
significantly different from each other. 

Conclusions 

In this paper, we have described our efforts 
to develop a model that can provide system- 
level management of a DSN. The goal of 
our research effort was to develop a model 
that could identify a sensor control strategy 
that could accomplish the sensing mission 
while reducing resource usage compared to 
the Base PoHcy of activating all sensors. 

After reviewing the data, we are confi- 
dent that our ADP approach is feasible 
for generating efficient DSN sensor man- 
agement strategies for complex, large-scale 
DSNs. The sensor control strategy recom- 
mended by our model was more efiicient 
than the Base PoHcy, requiring far less bat- 
tery power to accomplish the same sensing 
mission. For Type I problems, the SNOOPS 
PoHcy used 31 percent less battery power 
than the Base Policy and for Type II prob- 
lems, the SNOOPS Policy used 47 percent 
less battery power. 

A comparison of the Base PoUcy with the 
SNOOPS Policy with all parameters held 
constant and the same target location is pre- 
sented in Figure 19. While this comparison 
represents only a single instance, it is rep- 
resentative of the expected performance of 
both poUcies, based on the data. 

In the specific instance represented by this 
figure, both the Base Policy and SNOOPS 
PoHcy were able to successfully locate the 
target. As expected, the Base Policy was 
quicker, taking only four stages versus six 
stages. However, again as expected, the 
Base PoHcy was more costly, consuming 175 
units of power whereas the SNOOPS Policy 
only consumed 37 units.   In this case, the 

Object   j^^ 
Found   "ES^ 

Cost: 175 S'^-i-— 

Both policies are effective, 
but ttie SNOOPS Policy 

is more efficientl 

Base Policy       SNOOPS Policy 

*■* - * 

^-"^""^ "•- 
■^,;^. Object 
c-Srifg Found 
iip^Cost 37 

Figure 19: Base PoHcy vs. SNOOPS PoHcy 

SNOOPS PoHcy was more efficient than the 
Base PoHcy. 

Another important outcome of our re- 
search is the insight that simple dynamic 
control policies based on the underlying 
conditional probability distribution can be 
nearly as effective as the SNOOPS PoHcy 
while incurring a significantly lower compu- 
tational burden. 

Totsd Cost. These results indicate that 
the SNOOPS PoHcy indeed outperforms the 
Base Policy. As expected, the Base Policy 
generally provides an upper bound on ex- 
pected total operating costs. For both Type 
I and Type II problems, the variability of the 
results make it difficult to identify any signif- 
icant difference between the SNOOPS PoHcy 
and Actions 1, 2, 3, and 5. These results in- 
dicate that these four dynamic control poli- 
cies perform comparably with the SNOOPS 
Policy in terms of total cost. 

Number of Stages. These results were 
consistent for both Type I and Type II prob- 
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lems. In both cases, the Base Policy required 
the fewest number of stages to reach a termi- 
nation state. For both Type I and Type II 
problems, the SNOOPS Policy and Actions 
2, 3, and 5 were comparable in terms of how 
long it took to reach a termination state, 
generally two to three times longer than the 
Base Policy. 

Computation Time. The general trend 
is that the SNOOPS Policy takes much 
longer than the Base Policy or any of the 
dynamic control policies. In fact, the com- 
putation time was on average about 80 per- 
cent more for the SNOOPS PoUcy than for . 
the Base PoUcy. This is expected since there 
is a large amount of simulation required to 
execute the simulation-based poHcy itera- 
tion process that serves as the core of the 
SNOOPS PoUcy. 

In comparing Type I and Type II prob- 
lem computation times, we observed that 
the Type I problems took longer. This was 
a result of the assumption that there was 
a single target in the search region, requir- 
ing the update of the conditional probabihty 
for each cell in the search region with every 
execution of the Bayes update process. The 
Type II problems only updated observed cell 
conditional probability distributions. 

Note that for the Type I problems the re- 
quired computation time for the SNOOPS 
Policy averaged about 14 minutes, much too 
long to allow for real-time execution in a real 
world application. This was not a problem 
for the Type II problems since the average 
computation time was under a minute. 

Success Rate. For Type I problems, each 
poHcy resulted in a 100 percent success rate 
in reaching the correct termination state, 
with the lone exception of Policy 1 for Target 
47, where the success rate was 96 percent. 

For Type II problems, every policy exceeded 
an 82 percent success rate in reaching the 
correct termination state. The target that 
appeared to provide the most difficulty in 
terms of this measure was Target 1. 

One source for the difference in results be- 
tween the Type I and Type II problems 
could be the requirement to update every 
cell for the Type I problem. In this case, 
each observation provides more information 
since even the conditional probabiUties for 
unobserved cells get updated. In the T3npe II 
problems it appears that the system is more 
likely to settle into an incorrect termination 
region, much akin to reaching a local opti- 
mum versus a global optimum. 

SNOOPS Selection Rate. For Type I 
problems. Action 3 was selected the most of- 
ten. Action 2 was selected the next most fre- 
quently, followed by Action 1, Action 5, and 
Action 4. The obvious outher was Action 4, 
which was selected almost half as often as 
the other policies. 

For Type II problems, Action 5 was se- 
lected the most often. Action 1 was selected 
the next most frequently, followed by Action 
3, Action 2, and Action 4. The obvious out- 
lier was Action 4, which again was selected 
almost half as often as the other policies. 

Impact of Target Location. For both 
Type I and Type II problems, the DSN had 
difficulty in detecting Target 47 although the 
magnitude of difficulty was much higher for 
the Type I problem. It turns out that Tar- 
get 47 is ahnost on top of a sensor, but still 
within range of several other sensors. Inter- 
estingly, this is also the case for the other 
identified "difficult" targets in Figure 12: 
Targets 6, 14, and 35. It appears that this, 
combination of features prevents the DSN 
from quickly isolating the target location 
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and reaching a termination state. 

Future Research 

This work estabUshes a sound foimdation 
for continued research into the DSN sen- 
sor management problem. However, there 
is a tremendous amount of work remaining 
in this area as we continue to improve the 
SNOOPS simulation model to make it more 
robust and versatile. In addition, there are 
possible extensions of this work to address 
other sensor issues as well as other research 
areas. 

SNOOPS    Improvements. While 
SNOOPS is already a fairly capable DSN 
simulation model, we have already identified 
a number of improvements that will extend 
its capabiUties, to include: 

Moving targets. Implement a "Target 
Movement Filter" or "Latency Filter" to ex- 
tend results to moving targets. 

Multiple targets. Conduct simulations 
with multiple targets to determine if the sin- 
gle target results continue to apply. The 
structure is already present in SNOOPS but 
has yet to be exploited. 

Disparate sensors. Conduct simulations 
With disparate sensors to examine the bene- 
fit of sensor collaboration. The structure is 
already present in SNOOPS but has yet to 
be exploited. 

ADP mechanism. Investigate alternative 
Candidate Actions for Uf Try various im- 
provements to the cost-to-go approximation 
process, to include increasing from a one- 
step lookahead to a multiple-step lookahead. 

Cluster assignment. Examine a dynamic 
cluster assignment capability. 

Cost structure. Examine the effect of in- 
troducing costs to account for the number of 
stages required to reach termination. Inves- 
tigate the impact of a "Number of Stages" 
penalty cost to encourage quicker termina- 
tion while still trying to minimize operating 
costs. This could be accomplished by imple- 
menting a weighting mechanism in the op- 
timization process. Investigate the impact 
of a phased cost function, where the cost of 
using a sensor increases as it approaches the 
end of it's battery life. This approach could 
be expected to better preserve the average 
battery power within the network by avoid- 
ing the expenditure of all the use available 
from a single sensor. 

Increased realism. Implement terrain, veg- 
etation, and weather filters to represent the 
impact of these features on both observation 
and communication. 

Extensions to Other Sensor Issues. 
The SNOOPS model provides a new capa- 
biUty to examine critical aspects of sensor 
fusion and DSN sensor management. Possi- 
ble uses of the model include: 

Sensor placement. Identify "optimal" sen- 
sor locations by implementing various sensor 
placement schemes as static, stationary sen- 
sor usage poHcies. Simulating each of these 
policies can help determine which policy (or 
sensor location scheme) provides the best re- 
sults. 

Sensor mix. Evaluate various sensor net- 
work compositions to gain insights into sen- 
sor mix issues. 

Sensor fusion. Derive insights into the 
fusion of observations from different sen- 
sor types. Investigate the ability of non- 
imaging sensors to provide adequate situa- 
tional awareness where "precision" emplace- 
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ment of more capable sensors is not possible. 

DSN operational concepts. Develop opera- 
tional concepts to better integrate DSN op- 
erations with user needs. 
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